
Implementing the Pure Pattern Calculus: Abstract

Matt Roberts (mattr@ics.mq.edu.au)
Department of Computing, Macquarie University

September 11, 2006

1 Introduction

The Pure Pattern Calculus [JK06] is a gen-
eralisation of the lambda calculus based on
pattern-matching rather then beta-reduction.
In many ways, it is similar to the lambda
calculus, but the differences provide some
very interesting capabilities. The Pure Pat-
tern Calculus has a particular advantage over
the lambda calculus when describing polytypic
computations.

To this point, investigations into the Pure
Pattern Calculus have been largely theoreti-
cal. To fully investigate the properties and
potential uses of the Pure Pattern Calculus,
we need to build a programming language
from it. One with an efficient compiler and
a reasonably efficient run-time. This is the
goal of this project.

2 Operational Semantics

Our first step has been to create a simpler
operational semantics from the Pure Pattern
Calculus described in [JK06]. This simpler se-
mantics is designed for easy and efficient eval-
uation without losing any of the capabilities
that made this calculus interesting to us in
the first place, these include:

• Data Polymorphism (i.e. Haskell style
polymorphism).

• Structure Polymorphism (i.e. Polytypic
programming).

• Path Polymorphism (described in
[HJS06]).

• Pattern Polymorphism (abstracting
functions over the patterns they operate
on).

Our particular interest is the applicability
of the Pattern Calculus to program transfor-
mation, compiler generation and general pur-
pose polytypic programming.

3 Practical Completeness

The resulting semantics is not as general as
the pure pattern calculus. There are some ex-
pressions that have meaning in the pure pat-
tern calculus, but are meaningless in the se-
mantics we have formulated. It is our claim
that the expressions we exclude are not im-
portant in the respect that we are not pre-
vented from doing what we want to do. In
particular, we can still encode 4 of the 5 types
of polymorphism expressible in the Pure Pat-
tern Calculus and we can embed the lambda
calculus.

The fifth type of polymorphism is sub-
typing and is meaningless in the untyped set-
ting here. We expect to be able to include it
once types are added.

Importantly, all the previously identified
areas of interest are intact. In fact we expect
all meaningful programs of the Pure Pattern
Calculus to be expressible in these semantics,
although we are yet to demonstrate this for-
mally. The only ones that will be excluded
in this case are degenerate or pathological ex-
amples.

1



4 Future Work

This work is still in its early stages. We have
taken the first important steps towards hav-
ing an efficient compiler for the Pure Pattern
Calculus. From here we must consider the fol-
lowing additional issues.

Lazy vs. Strict We have a preference for
lazy semantics where this make sense. It
will be interesting to see how a lazy pat-
tern calculus behaves, in particular, just
how lazy can we make pattern matching?

The Evaluation Mechanism There exists
a large body of work on efficiently evalu-
ating functional programming languages.
While much of this translates immedi-
ately to the current setting, further work
is needed to provide a fully optimised im-
plementation, especially in the lazy con-
text.

The Type System Describing untyped
polytypic computations is an easy
problem. Being able to describe them
is a strongly typed language is much
harder and much more useful. We
are well advanced towards providing a
strongly typed version of our language,
along lines similar to those presented
in [Jay06]. Once we have this, we can
begin to explore the space of admissible
programs and the characteristics of the
type system.

Verifiable Compiler We also have an inter-
est in formally verified compilers and will
take the opportunity of implementing a
prototype compiler to explore this this
aspect of our system as well.

References

[HJS06] F. U. Huang, C. B. Jay, and
D. B. Skillicorn. Programming
with hetrogenous structures: Ma-
nipulating xml data using bondi.

In CRPITS’48: Proceedings of the
48th conference on Computer science
2006, pages 287–295, Darlinghurst,
Australia, 2006. Australian Com-
puter Society, Inc.

[Jay06] Barry Jay. Typing first-class pat-
terns. In Proceedings of The Third
International Workshop on Higher-
Order Rewriting. To Appear, 2006.

[JK06] Barry Jay and Delia Kesner. Pure
pattern calculus. In Peter Sestoft,
editor, Programming Languages and
Systems: 15th European Symposium
on Programming, volume 3924/2006
of Lecture Notes in Computer Sci-
ence, pages 100–114. Springer, 2006.

2


