
Ben Lippmeier
Australian National University

Type Inference and Optimisation for an Impure World.

In the land of functional programming a bitter war rages between the ideals of purity and the 
temptation of side effects. On one hand, the banishment of effects from a pure language makes 
programs easier to reason about, permits safe lazy evaluation and accommodates a host of clever 
compiler optimisations. On the other hand, computational effects are required to support 
destructive update and for interaction with the outside world. At some point, all practical, 
general purpose languages must interact with the outside world. This interaction is a computational 
effect, and effectful expressions have an implicit ordering which must be respected. To change the 
order of conflicting effects would be to change the meaning of the program.

There are two traditional methods for keeping effects in order. The simplest approach - that of 
allowing arbitrary, untracked effects at any point in the program - drastically reduces the 
applicability of compiler optimisations such as let-floating and the full laziness transform. Both 
of these optimisations involve the re-ordering of function applications and cannot be performed 
when there is any chance re-ordering their associated effects. The other approach - that of 
encapsulating all side effects in some form of state monad - tends to fracture a language into two 
separate sub-languages with reduced compositionality. One of the results of this fracturing can be 
seen in Haskell with the proliferation of combinators with both 'pure' and monadic versions, ie map 
vs mapM, filter vs filterM, foldl vs foldM. Both versions perform the same conceptual operation, 
yet each is distinct and incompatible.

One solution for this problem, and the solution to be outlined in this talk, is to allow arbitrary 
effects in the program and then perform a type based effect analysis at compile time. The result of 
this effect analysis is used to annotate the intermediate language with the lub of the effects that 
can be generated by each function application. This information is used to guide the optimisations 
so that the order of conflicting effects can be preserved.

We have a working, prototype compiler which accepts a Haskell-like language and uses C as its 
target. We use the second order lambda calculus as an intermediate language and include region, 
effect and closure information along with the types. Effect information is used to guide our 
optimisations, region information is used to mask effects which are local to a given function, and 
closure information is used to track the sharing of regions between functions. The language allows 
arbitrary data structures to be updated without requiring the use of the Ref type as in ML. We 
support programmer-introduced lazy evaluation, and make use of our type system to ensure that only 
expressions without visible effects may be suspended. We also build on Leroy's work on using 
closure typing to eliminate the unsoundness introduced into a Hindley-Milner style type system by 
polymorphic update.


